3.1.Reflection of sound by an interface
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CHAPTER THREE
TWO DIMENSIONAL WAVES

1 Reflection and tranmission of sound at an inter-

face

Reference : Brekhovskikh and Godin §.2.2.

The governing equation for sound in a honmogeneous fluid is given by (7.31) and

(7.32) in Chapter One. In term of the the veloctiy potential defined by

u=Vo
1t is ,
oz Vv

where ¢ denotes the sound speed. Recall that the fluid pressure

p = —pdp/ot

also satisfies the same equation.

1.1 Plane wave in Infinite space

Let us first consider a plane sinusoidal wave in three dimensional space
¢(X, t) — (boei(k-x—wt) — ¢Oei(kn-x—wt)

Here the phase function is

O(x,t) =k -x—wt

(1.1)

(1.2)
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The equation of constant phase 6(x,t) = 6, describes a moving surface. The wave

number vector k = kn is defined to be
k =kn=Vb (1.6)

hence is orthogonal to the surface of constant phase, and represens the direction of wave

propagation. The frequency is defined to be
00

== 1.
w Y (1.7)
Is (2.40) a solution? Let us check (2.38).
o 0 0 :
Vo= <%> a_y’@) ¢ = ikg
V2=V - V¢ =ik ik¢ = —k*¢p
0*¢ 2
oz WY
Hence (2.38) is satisfied if

w = ke (1.8)

1.2 Two-dimensional reflection from a plane interface

Consider two semi-infinite fluids separated by the plane interface along z = 0. The
lower fluid is distinguished from the upper fluid by the subscript ”1”. The densities and
sound speeds in the upper and lower fluids are p,c and pq, ¢; respectively. Let a plane
incident wave arive from z > 0 at the incident angle of 6 with respect to the z axis, the

sound pressure and the velocity potential are

pi = Pyexplik(zsinfd — z cosb)] (1.9)
The velocity potential is
P
o = —Z—Oexp[ik(a:sinﬁ — zcos ) (1.10)
wp

The indient wave number vector is

k' = (K', k') = k(sin ), — cos ) (1.11)

x?) 'z
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The motion is confined in the z, z plane.

On the same (incidence) side of the interface we have the reflected wave
pr = Rexplik(zsinf + z cos 6)] (1.12)
where R denotes the reflection coefficient. The wavenumber vector is

k" = (kl,kl) = k(sin 0, cos ) (1.13)

x) "z

The total pressure and potential are
p = Py{explik(zsinf — zcos )] + Rexp[ik(xsinf + z cos 0)]} (1.14)

b= —Zpﬁ {explik(xsin@ — z cos0)] + Rexp[ik(zsind + z cosd)]} (1.15)
w

In the lower medium z < 0 the transmitted wave has the pressure
p1 = T Pyexpliky(zsinf; — z cos 6;)] (1.16)

where T is the transmission coefficient, and the potential

Iz
b = —;—f)TeXp[ikl(I sinfy — z cos 6] (1.17)
1

Along the interface z = 0 we require the continutiy of pressure and normal velocity,

ie.,

p=p, z2=0 (1.18)
and

w=w =0, z=0, (1.19)
Applying (2.54), we get
PO {eikxsine + Reikxsin@} _ TpoeikwvsinGl’ —0 < T < 0.

Clearly we must have

ksinf = ky sin 6, (1.20)

or,
sin 0 _ sin 6 (1.21)

C C1
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With (2.56), we must have
1+R=T (1.22)

Applying (2.55), we have

P . . P
ro [—k cos e + Rk cos et Sme] — Yo

[—kl cos 0, Tettrsin 91]
pw p1w

which implies

pky cos 0,
1-R=———T 1.23
p1k cosd (1.23)
Egs (2.58) and (2.59) can be solved to give
_ 2p1k cosd (1.24)
pkq cos 01 + pik cos 6 ’
R p1k cos @ — pky cos 6, (1.25)
p1k cos 0 + pky cos 6,
Alternatively, we have
_ 2picq cos b (1.26)
pccos By + pieq cos ’
R p1c1 cos B — pecos b (1.27)
p1c1 cos B + pccos by
Let
m=2 n==2 (1.28)
p 1

where the ratio of sound speeds n is called the index of refraction. We get after using

Snell’s law that

sin? 0
_mcosé’—ncos@l_mcose_n == (1.29)
m cos 0 + n cos 6y mcosf 4 n /1_51229
The transmission coeflicient is
2 0
T=1+R= meos (1.30)

02
sin” @
1— y:

mcosf +n

:

We now examine the physics.

1. If n = ¢/e; > 1, the incidence is from a faster to a slower medium, then R is
always real. For normal incidence § = 6; = 0,
m-—n

R =
m-+n

(1.31)
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isreal. f m>n, 0 < R< 1. If 0 =m/2,
n

R=——=-1 1.32

" (1.52)

Hence R lies on a segment of the real axis as shown in Figur 1.a. If m < n, then

R < 0 for all # as shown in figure 1.b.

2. If however n < 1 then #; > 6. There is a critical incidence angle ¢, called Brewster’s
angle and defined by
sind =n (1.33)
When 6 — 6, 6, becomes 7/2. Below this critical angle (# < §), R is real. In
particular, when 6 = 0, (2.67) applies. At the critical angle

R m cos o B

m cos &

, as shown in figure 2.c for m > n and in 2.d. for m < n.

When 6 > 9, the square roots above become imaginary. We must then take

. 29 . 29
00591:\/1—8122 =1 8122 —1 (1.34)

This means that the reflection coefficient is now complex

mcosf —iny/ 20
R = (1.35)
mcosf +in

with |R| = 1, implying complete reflection. As a check the transmitted wave is

pr =T exp [kl (zx sin 0 + z4/sin?0/n2 — 1)} (1.36)

so the amplitude attenuates exponentially in z as z — —oo. Thus the wave train

now given by

cannot penetrate much below the interface. The dependence of R on various
parameters is best displayed in the complex plane R = RR + iSR. It is clear
from (2.71 ) that SR < 0 so that R falls on the half circle in the lower half of the

complex plane as shown in figure 2.c and 2.d.
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(a) ‘ k)

em/2? Al e=m/2 80

> -1 Complex Reflection

Coeffecien ts:

(3) 1 < cfcy < ey/e

(b} 1 < cfcy, Byfe < ooy
(c)c/oy < 1, ofcy < ey/e

el (d) (d) er/e < cfop < 1

Figure 1: Complex reflection coefficient. From Brekhovskikh and Godin §.2.2.

2 Reflection and tranmission of sound at an inter-

face

Reference : Brekhovskikh and Godin §.2.2.

The governing equation for sound in a honmogeneous fluid is given by (7.31) and

(7.32) in Chapter One. In term of the the veloctiy potential defined by

u=Vo (2.37)
it is ,

where ¢ denotes the sound speed. Recall that the fluid pressure

p = —pd¢p/ot (2.39)

also satisfies the same equation.



3.1.Reflection of sound by an interface 7

2.1 Plane wave in Infinite space

Let us first consider a plane sinusoidal wave in three dimensional space
Cb(X, t) — ¢Oei(k-x—wt) — ¢Oei(kn-x—wt) (240)

Here the phase function is

0(x,t) =k -x—wt (2.41)
The equation of constant phase 0(x,t) = 6, describes a moving surface. The wave
number vector k = kn is defined to be

k = kn = V0 (2.42)

hence is orthogonal to the surface of constant phase, and represens the direction of wave

propagation. The frequency is defined to be
00

w=—% (2.43)
Is (2.40) a solution? Let us check (2.38).
0 0 0 :
Vo = <%> a_y’@) ¢ = iko
V2=V V¢ =ik-ikp = —k*¢
D¢ 5
e =
Hence (2.38) is satisfied if
w = kc (2.44)

2.2 Two-dimensional reflection from a plane interface

Consider two semi-infinite fluids separated by the plane interface along z = 0. The
lower fluid is distinguished from the upper fluid by the subscript ”1”. The densities and
sound speeds in the upper and lower fluids are p,c and py, ¢; respectively. Let a plane
incident wave arive from z > 0 at the incident angle of # with respect to the z axis, the

sound pressure and the velocity potential are

pi = Pyexplik(zsind — z cos )] (2.45)
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The velocity potential is
P
o = _Uo explik(x sind — z cos 0]
wp

The indient wave number vector is

k' = (k', k') = k(sin 6, — cos 0)

x) 'z

The motion is confined in the z, z plane.

On the same (incidence) side of the interface we have the reflected wave

pr = Rexplik(zsind + z cos 0)]
where R denotes the reflection coefficient. The wavenumber vector is
k" = (kL kL) = k(sin 0, cos 0)
The total pressure and potential are

p = Py{explik(zsinf — zcosh)] + Rexplik(zsind + z cos )]}

b= —Zp% {exp[ik(zsin @ — z cos )] + Rexplik(zsind + z cosb)]}

In the lower medium z < 0 the transmitted wave has the pressure
p1 = T Pyexpliki(xsin @ — z cosb,)]
where T is the transmission coefficient, and the potential

P
o1 = Ly explik;(xsin 6 — z cosb)]
1w

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

Along the interface z = 0 we require the continutiy of pressure and normal velocity,

ie.,
b =D, z2=0

and

w=w =0, z=0,

Applying (2.54), we get

PO {ezkxsm€ _I_Rezkxsmé} _ TP0€Zk1xsmel, —00< T < 00,

(2.54)

(2.55)
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Clearly we must have
ksin @ = k; sin 6, (2.56)
or,
sinff  sin6;
— 2.57
. . (2.57)
With (2.56), we must have
1+R=T (2.58)
Applying (2.55), we have
P o o ) P o
7’_0 [—k COS eezksme + Rk cos eezksme} — Z_O [_kl COS elTez/ﬁ smel}
pw Pw
which implies
pky cos 0,
1-R=———T 2.59
p1k cos @ (2.59)
Egs (2.58) and (2.59) can be solved to give
_ 2p1k cosd (2.60)
pki cos by + pikcos6 ’
_ prkcost — pky cos 0, (2.61)
~ pikcos O + pky cos b, )
Alternatively, we have
_ 2picq cos b (2.62)
pccos By + pieq cosd ’
R p1c1 cos B — pecos bq (2.63)
p1c1 cos B + pecos by
Let
m:&, n=" (2.64)

p 1
where the ratio of sound speeds n is called the index of refraction.

Snell’s law that

sin? 6
n2

1—

mcosf — ncos b, mcostl —n

R =

mcos 8 + ncos 6, sin 0

n2

mcosf +ny/1 —

i

The transmission coefficient is

2m cos 0

T=1+R=
sin? 6
n2

1 —

mcosf +n

:

We now examine the physics.

We get after using

(2.65)

(2.66)
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1. If n = ¢/e; > 1, the incidence is from a faster to a slower medium, then R is

always real. For normal incidence § = 6; = 0,
p=""" (2.67)
m-+n

isreal. f m>n, 0 < R< 1. If 6 =7/2,

n
—_2_ 2.
R - (2.68)

Hence R lies on a segment of the real axis as shown in Figur 1.a. If m < n, then

R < 0 for all # as shown in figure 1.b.

2. If however n < 1 then #; > 6. There is a critical incidence angle ¢, called Brewster’s
angle and defined by
sind =n (2.69)
When 6 — 6, 6, becomes 7/2. Below this critical angle (# < §), R is real. In
particular, when 6 = 0, (2.67) applies. At the critical angle

m cos 0
— -1
m cos 0

, as shown in figure 2.c for m > n and in 2.d. for m < n.

When 6 > 9, the square roots above become imaginary. We must then take

sin?d . [sin?6
costh =1/1— > =11/ > -1 (2.70)

This means that the reflection coefficient is now complex

. 02
mecosf —in 512—29—1

R= (2.71)
mcosf +in

with |R| = 1, implying complete reflection. As a check the transmitted wave is

pr = T exp {kl (Z:E sin @) + z4/sin?0/n? — 1)} (2.72)

so the amplitude attenuates exponentially in z as z — —oo0. Thus the wave train

now given by

cannot penetrate much below the interface. The dependence of R on various
parameters is best displayed in the complex plane R = RR + iSR. It is clear
from (2.71 ) that SR < 0 so that R falls on the half circle in the lower half of the

complex plane as shown in figure 2.c and 2.d.



3.2.Equations for Elastic Waves 11

(a) ‘ k)

Sn/2 o fenf2 80

> -1 Complex Reflection
Coeffecients:
(3) 1 < cfcy < ey/e

(b} 1 < cfcy, Byfe < ooy
(c)c/oy < 1, ofcy < ey/e

(C) (d) (d)eife<cicp <1

Figure 2: Complex reflection coefficient. From Brekhovskikh and Godin §.2.2.

3 Equations for elastic waves

Refs:
Graff: Wave Motion in FElastic Solids
Aki & Richards Quantitative Seismology, V. 1.
Achenbach. Wave Propagation in Elastic Solids
Let the displacement vector at a point x; and time ¢ be denoted by u;(z;,t), then
Newton’s law applied to an material element of unit volume reads
O®u;  Omy;

pw N Oxj

(3.1)

where 7;; is the stress tensor. We have neglected body force such as gravity. For a
homogeneous and isotropic elastic solid, we have the following relation between stress
and strain

Tij = Aepplij + 2/1e45 (3.2)

where A and p are Lamé constants and
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is the strain tensor. Eq. (3.2) can be inverted to give

1+v v
€ij = Tﬂ'j - ETkkéij

where

g HBA+ )

A
is Young’s modulus and
A
Yo

Poisson’s ratio.

Substituting (3.2) and (3.3) into (3.1) we get

2, 2,
- A%?f ”aig;j +“ai,-g;j
= (A p) (‘98;:;2 + 1V2u;
In vector form (3.1) becomes
p% = A+ p)V(V-u)+ pViu

Taking the divergence of (3.1) and denoting the dilatation by

8u1 i 8uz i 0U3
0:)31 01'2 01'3

Azekk:

we get the equation governing the dilatation alone

0’A
Pom = A+ )V - VA + uV2A = (A + 2u) VA
or, ,
0“A
W = C%V2A
where

A+ 2u
Cr, =
p

12

(3.5)

(3.6)

(3.8)

(3.10)

(3.11)
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Thus the dilatation propagates as a wave at the speed c;. To be explained shortly, this
is a longitudinal waves, hence the subscript L. On the other hand, taking the curl of

(3.7) and denoting by & the rotation vector:
W=V xu (3.12)
we then get the governing equation for the rotation alone

— = Vid (3.13)

cr ::\/Eg (3.14)

Thus the rotation propagates as a wave at the slower speed c¢r. The subscript 7" indicates

where

that this is a transverse wave, to be shown later.

The ratio of two wave speeds is

C—L:,/u>1. (3.15)
cr H

7 1
o __ _1 1
A 2v (3.16)

it follows that the speed ratio depends only on Poisson’s ratio

Since

Cr, 2 —2v
- 3.17
cr 1—2v ( )

There is a general theorem due to Helmholtz that any vector can be expressed as

the sum of an irrotational vector and a solenoidal vector i.e.,
u=Ve¢+VxH (3.18)

subject to the constraint that

V-H=0 (3.19)

The scalar ¢ and the vector H are called the displacement potentials. Substituting this
into (3.7), we get
2

pﬁ[v¢+VXH]Z,uVZ[qu—G—VXH]+()\—|—M)VV-[V¢—I—V><H]
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Since V- V¢ = V2¢, and V-V x H = 0 we get

2

0o 0*H
V(A +2p) V20 — 'OW] +V x [MV2H ~ o } =0 (3.20)
Clearly the above equation is satisied if
02
2u)V%p — p— = 21
A +20)V76 = pay =0 (3.21)
and ,
0°H
2 — =
uV°H —p BIE 0 (3.22)

Although the governing equations are simplified, the two potentials are usually coupled

by boundary conditions, unless the physical domain is infinite.

4 Free waves in infinite space
The dilatational wave equation admits a plane sinusoidal wave solution:
B(x, 1) = goetrxert) (4.1)

Here the phase function is

0(x,t) = k(n-x —cpt) (4.2)

which describes a moving surface. The wave number vector k = kn is defined to be
k=Fkn=V6 (4.3)

hence is orthogonal to the surface of constant phase, and represents the direction of

wave propagation. The frequency is

00

~5 (4.4)

w=ker =

A general solution is
¢ =0o¢n-x—cpt) (4.5)

Similarly the the following sinusoidal wave is a solution to the shear wave equation;

H = Hoeik}(n~x—CTt) (46)
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A general solution is

Note:
We can also write (4.5) and (4.9) as

n-x
¢ =t — ) (4.8)
CrL
and
H=H(t- 2% (4.9)
cr
where
SL:£, STZE (410)
Cr, Ccr

are called the slowness vectors of longitudinal and transverse waves respectively.

In a dilatational wave the displacement vector is parallel to the wave number vector:
u, =Ve¢=¢n (4.11)

from (3.5), where ¢’ is the ordinary derivative of ¢ with repect to its argument. Hence
the dilatational wave is a longitudinal (compression) wave. On the other hand in a
rotational wave the displacement vector is perpendicular to the wave number vector,

B B 0H, O0H, 0H, O0H, 0H, O0H,
ur = VXH_ex<8y 0z)+ey<ﬁ 8z)+ez<0x Oy)

= e, (H;ny — H;nz) +e, (H.n, — H.n,)+ e, (H;nx — H;ny)

= nxH (4.12)

from (3.7). Hence a rotational wave is a transverse (shear) wave.

4 Elastic waves in a plane

Refs. Graff, Achenbach,
Aki and Richards : Quantitative Seismology, v.1
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Let us examine waves propagating in the vertical plane of x,y. All physical quantities

are assumed to be uniform in the direction of z, hence 9/0z = 0, then

=20 Ol =0 e = O O (4.13)
and
8;;”” + 88—}5’ =0 (4.14)
where ) 5 | 0%
%+a—¢:%ﬁ’ (4.15)
&°H, 0°H, 1 &H, ; (4.16)

o2 T apr aoe PTOY
Note that u, is also governed by (4.16).

Note that the in-plane displacements u,,u, depend only on ¢ and H,, and not on
H,, H,. Out-of-plane motion u, depends on H,, H, but not on H,. Hence the in-
plane displacement components u,,u, are independent of the out-of-plane component
u,. The in-plane displacements (u,,u,) are associated with dilatation and in-plane
shear, represented respectively by ¢ and H,, which will be refered to as the P wave and
the SV wave. The out-of-plane displacement u. is associated with H, and H,, and will
be refered to as the SH wave.

From Hooke’s law the stress components can be written

Ter = A (8% + %) +2u8u”ﬂ = (A +2u) (au:” + %) — 2M%

ox dy ox ox oy oy
B ¢ %9 P*¢  0°H,
- o (G 5) 2 (55 - ) o
B Ou, — Ouy ou, Quy  Ouy\  Ouy
Ty = A<6x+ay)+2“6y_(/\+2“)<8x+8y) 2“(%
B ¢ 0*¢ 0*¢  O°H,
A

(4.19)

Tzz =

A &o 0
2(N + ) dx?  0y?

 (Ouy  Oug\ 0%y  0*H, O*H,

(Tae + Tyy) = U(Tpw + Tyy) = A (
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ou., 0*H, 0°H,
()
ou., 0*H,  0*H,
— z — 4.22
e = s ( d0xdy 8x2) (4.22)

Different physical situations arise for different boundary conditions. We shall con-

sider first the half plane problem bounded by the plane y = 0.

5 Reflection of elastic waves from a plane boundary

Consider the half space y > 0, —o00 < x < oco. Several types of boundary conditions
can be prescribed on the plane boundary : (i) dynamic: the stress components only
(the traction condition); (ii) kinematic: the displacement components only, or (iii). a
combination of stress components and displacement components. Most difficult are
(iv) the mixed conditions in which stresses are given over part of the boundary and
displacements over the other.

We consider the simplest case where the plane y = 0 is completely free of external

stresses,

Tyy = Ty = 0, (5.23)

and

Tyz =0 (5.24)

It is clear that (5.23) affects the P and SV waves only, while (5.24) affects the SH
wave only. Therefore we have two uncoupled problems each of which can be treated

separately.

5.1 P and SV waves

Consider the case where only P and SV waves are present, then H, = H, = 0. Let all

waves have wavenumber vectors inclined in the positve x direction:
¢ — f(y)eifsc—iwt’ Hz — hz(y)eiCx—iwt (525)

It follows from (4.15) and (4.16) that
@f
dy?

d*h,
dy?

+a’f =0, + 3%h, = 0, (5.26)
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with

a=\[% o= \i-e p- ——<2 Vi -¢ (5.27)

‘L
We first take the square roots to be real; the general solution to (5.26) are sinusoids,

hence,
¢ = ApeiEz—ay—wt) | Bpei(swmy—wt)’ H, = AgelC=By=wt) | peilCe+Py—wt) (5.28)

On the right-hand sides the first terms are the incident waves and the second are the
reflected waves. If the incident amplitudes Ap, Ag and are given, what are the properties
of the reflected waves Bp, Bg? The wave number components can be written in the polar

form:

(&, ) = kr(sinfp,cosr), ((,0)= kp(sinbr,cosbr) (5.29)

where (kr, kr) are the wavenumbers, the (6r,67) the directions of the P wave and SV

wave, respectively. In terms of these we rewrite (5.28)
¢ — ApeikL(sineLx—coseLy—wt) + BpeikL(sineLx-‘rcosGLy—wt) (530)
Hz — AseikT(sinGTx—COSOLy—wt) + BseikT(SinGTm—l—cos@Ty—wt) (531)
In order to satisfy (5.23) (7, = 74y = 0) on y = 0 for all x, we must insist:
]{ZL SiIlHL = ]{ZT sin@T, (5 = C) (532)
This is in the form of Snell’s law:
sinf; sinfr

= (5.33)

sinf;, ¢ [IN+2n  kp
sin HT Ccr 12 ]{ZL & (5 3 )

When (5.23) are applied on y = 0 the exponential factors cancel, and we get two

implying

algebraic conditions for the two unknown amplitudes of the reflected waves (Bp, Bg) :
]{7%(2 Sil’l2 ‘9L — Iiz)(Ap + Bp) - ]{Z% sin 297“(145 - Bs) =0 (535)

k3 sin 20 (Ap — Bp) — k¥ cosOp(Ag + Bg) = 0. (5.36)
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Using (5.34), we get
2sin? 0y, — k? = K*(2sin® O — 1) = —k? cos 207

The two equations can be solved and the solution expressed in matrix form:

B S S A
P PP Ssp P (5.37)
Bg Sps  Sss Ag
where
S S
S= |7 78 (5.38)
Sps  Sss

denotes the scattering matrrix. Thus Spg represents the reflected S-wave due to incident

P wave of unit amplitude, etc. It is straightforward to verify that

_ sin 20y sin 207 — k* cos® 207

Sop = 5.39
PP sin 207, sin 207 + k2 cos? 207 ( )
—2k2 sin 207 cos 201
Sop = 5.40
5P sin 207, sin 207 + K2 cos? 207 ( )
2 sin 260 20
Spg o S1n 20, COS 40T (541)

" sin 26, sin 201 + K2 cos? 201

S — s?n 20, s%n 207 — K% cos® 207 (5.42)
sin 207, sin 207 + k2 cos? 201

In view of (5.33) and

Cr, 2—2v
= = 5.43
Ccr 1—2v ( )

K =

The scattering matrix is a function of Poisson’s ratio and the angle of incidence.

(i) P- wave Incidence : In this case 6, is the incidence angle. Consider the special
case when the only incident wave is a P wave. Then Ap # 0 and Ag = 0 and only
Spp and Sgp are relevant. . Note first that 6, > 67 in general . For normal incidence,

0, = 0, hence 07 = 0. We find
Spp=—1, Sps=0 (5.44)
there is no SV wave. The refelcted wave is a P wave. On the other hand if

sin 20; sin 207 — k2 cos® 207 = 0 (5.45)



3.5. Reflection of elastic waves from a plane boundary 20

then Spp = 0, hence Bp = 0 but Bg # 0; only SV wave is reflected. This is the case
of mode conversion, whereby an incident P waves changes to a SV wave after reflection.

The amplitude of the reflected SV wave is

BS o tan 297“

N — PPS
AP Ii2

(5.46)

(ii) SV wave Incidence : Let Ap = 0 but Ag # 0. In this case 7 is the incidence
angle. Then only Sgp and Sgg are relevant. For normal incidence, 0, = 6y = 0,
Sss = —1, and Sgp = 0; no P wave is reflected. Mode conversion (Bp # 0, Bs = 0) also
happens when (5.45) is satisfied. Since 6, > 0r, there is a critical incidence angle 67
beyond which the P wave cannot be reflected back into the solid and propagates only

along the x axis. At the critical angle
sinf, =1, (0, =7n/2), or sinfr=1/k (5.47)

by Snell’s law. Thus for v = 1/3, k = 2 and the critical incidence angle is 67 = 30°.
Beyond the critical angle of incidence, the P waves decay exponentially away from
the free surface. The amplitude of the SV wave is linear in y which is unphysical,

suggesting the limitation of unbounded space assumption.

5.2 SH wave

Because of (5.2)

oH, OH, 0
ox dy
we can introduce a stream function 1 so that
oY oY
H,=— H,=— 5.48
8y Y 81’ ( )
where )
1 0%y
Vi = —— 5.49
Y cZ ot? (5-49)
Clearly the out-of-plane dispacement is
Hm H 2 2
uzz—a +ay_aw+a¢:v2¢ (5.50)

dy or  0x2  Oy?
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ratios, with a ray representation of the reflection also shown.
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and )
0 o p 0 0%
o _KHOooy 5.51
Ty M@yv 4 cZ Oy Ot? (5:51)
The zero-stress boundary condition implies
o
— =0 5.52
5 (552)

Thus the problem for 1) is analogous to one for sound waves reflected by a solid plane.

Again for monochromatic incident waves, the solution is easily shown to be
P = (Ae PV — Ae) et (5.53)

where

o + 3 = k3 (5.54)

We remark that when the boundary is any cylindrical surface with axis parallel to

the z axis, the the stress-free condition reads
.. =0, on B. (5.55)

where n is the unit outward normal to B. Since in the pure SH wave problem

_ Ou, 0 _,,  p 0%
T = ey S anY VT Zon o
Condition (5.55) implies
oy
I =0, on B. (5.56)

Thus the analogy to acoustic scattering by a hard object is true irrespective of the

geomntry of the scatterer.

6 Scattering of monochromatic SH waves by a cir-

cular cavity

6.1 Solution in polar coordinates

We consider the scattering of two-dimensional SH waves of single frequency. The time-

dependent potential can be wirtten as

U(x,y,t) =R [¢(z,y)e ] (6.1)
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where the potential ¢ is governed by the Helmholtz equation

V2¢+ ]{?2¢ 82¢ + 82¢2

T R6=0, k=2 6.2

To be specific consider the scatterer to be a finite cavity of some general geometry. On

the stress-free boundary B the shear stress vanishes,

Ton = — <@ —wt) =0 (6.3)

on
hence
99
— =0 6.4
o (6.4)
Let the incident waves be a plane wave
pr = Ae’*> (6.5)

and the angle of incidence is 6, with respect to the positive x axis. In polar coordinates

we write

k = k(cosb,,sinb,), x=r(cosf,sinb) (6.6)
¢ = Aexp [ikr(cos b, cos f + sin 0, sin §)] = Ae'kreos@=b0) (6.7)

It can be shown (see Appendix A) that the plane wave can be expanded in Fourier-Bessel

series :

eihreos(0=0o) Zen w(kr) cosn(6 —6,) (6.8)
where €, is the Jacobi symbol:
c0=0, =2 n=123,... (6.9)

Each term in the series (6.8) is called a partial wave.

Let the total wave be the sum of the incident and scattered waves

¢ =1+ ¢s (6.10)

then the scattered waves must satisfy the radiation condition at infinity, i.e., it can only
radiate energy outward from the scatterer.
The boundary condition on the cavity surface is

d¢

a =0, r=a (6.11)
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In polar coordinates the governing equation reads

10 ( 06\ 10% o

Since ¢ satisfies the preceding equation, so does ¢g.

By the method of separation of variables,
¢s(r,0) = R(r)©(0)
we find
R’ + 1R + (K*r* = n*)R=0, and 0" +n’0 =0
where n = 0,1,2,... are eigenvalues in order that © is periodic in 6 with period 27.
For each eigenvalue n the possible solutions are

©,, = (sinn#, cosnb),

R, = (H (kr), H? (kr)),

where H" (kr), H{? (kr) are Hankel functions of the first and second kind, related to
the Bessel and Weber functions by

HWY(kr) = J,(kr) + iY,(kr), H® (kr) = Ju(kr) —iY,(kr) (6.13)
The most general solution to the Helmholtz equation is

¢s = A Z (A, sinnb + B, cosnb) [CnH,(Ll)(kr) + DnH,(LQ)(kr)} , (6.14)

n=0

For large radius the asymptotic form of the Hankel functions are

2 : s nm 2 : s nm
Hy(Ll) ~ %62(]67”—2—7)’ Hr(L2) ~ /%e_l(kr_Z_T) (615)

In conjunction with the time factor exp(—iwt), gy gives an outgoing wave while g
gives an incoming wave. To satisfy the radiation condition, we must discard all terms
involving H?. From here on we shall abbreviate H." simply by H,. The scattered

wave 1S now

ps = A Z (A, sinnd + B, cosnb) H,(kr) (6.16)
n=0
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The expansion coefficients (A, B,,) must be chosen to satisfy the boundary condition
on the cavity surface! Once they are determined, the wave is found everywhere. In
particular in the far field, we can use the asymptotic formula to get

> . 2 .
ps ~ A Z (A, sinnd + B, cosnf) e~ "/2 | ——¢ikr=in/4 (6.17)

wkr
n=0

Let us define the dimensionless directivity factor

A(0) = Z (A, sinnf + B, cosnf) e~/ (6.18)

n=0

which indicates the angular variation of the far-field amplitude, then

b5 ~ AA(0)y/ %6"’”‘”/ ! (6.19)

This expression exhibits clearly the asymptotic behaviour of ¢g as an outgoing wave.

By differentiation, we readily see that
lim /7 (_‘9;5 — S) —0 (6.20)
r

which is one way of stating the radiation condition for two dimensional SH waves.

At any radius r the total rate of energy outflux by the scattered wave is

2n ou 2 dp . .
2 k2 —iwt 2 b e—iwt
7’/0 dor,. By ,ur/o d@%{ pk € } R [iwk? et

4 2T 4 T
:—““’2]”/0 d@é)%[ gﬂ %’”s/o d@{ gﬂ (6.21)

where overline indicates time averaging over a wave period 27 /w.

We remark that in the analogous case of plane acoustics where the sound pressure

and radial fluid velocity are respectively,
99 d¢
= —Po=r) d u, =— 6.22
p 19 It aln (% Or ( )
the energy scattering rate is

* WPLT L0¢ _WPoT .09
7’/0 dépu, = §R/d6’< 100" 07“) 5 /d@ (qb o ) (6.23)

'In one of the numerical solution techniques, one divides the physical region by a circle enclosing the

cavity. Between the cavity and the circle, finite elements are used. Outside the circle, (6.16) is used.
By constructing a suitable variational principle, finite element computation yields the nodal coefficients

as well as the expansion coefficients. See (Chen & Mei , 1974).
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6.2 A general theorem on scattering

For the same scatterer and the same frequency w, different angles of incidence 6; define

different scattering problems ¢;. In particular at infinty, we have

ikr cos( 2 ikr—aum
(ijAj{ k (6=95) +A(>M%€k /4} (624)

Let us apply Green’s formula to ¢; and ¢, over a closed area bounded by a closed

contour C,

/ /S (659201 — 61 V23) dA — / (@% Yy 8@) / (@% _ ¢1‘9¢1)

where n refers to the unit normal vector pointing out of S. The surface integral vanishes
on account of the Helmholtz equation, while the line integral along the cavity surface

vanishes by virture of the boundary condition, hence

/ <¢2% — ¢1a¢2) ds =0 (6.25)

By similar reasioning, we get

/C < 991 a¢2> ds =0 (6.26)

where ¢} denotes the complex conjugate of ¢;.

Let us choose ¢1 = ¢ = ¢ in (6.26), and get

/ds <¢a¢* — ¢ @) ds = 23 (/ ds¢a¢*) 0 (6.27)
C

Physically, across any circle the net rate of energy flux vanishes, i.e., the scattered power

must be balanced by the incident power.
Making use of (6.24) we get

2 . 2 _
0= %/ rdb [ezkrcos(e—eo) + T./40(‘9)6@1m1—17r/4
0 TRT

ik 0 — 90 —ikrcos(0—0,) 13 (9 —ikr+in/4
[ ik cos( Je i ”—wkrAO( Je

2m 2
= \s/o rd@{ ik cos(6 —0,) + 7T]€7”( ik)| Al

+eikr[cos€—90)—1]+iﬂ/4 —ik A*
(i )\/ 7rk:r

e-zkr[eos@—Go)—l]—W/‘l( Z]g) cos(ﬁ ) ) iy —A, }
r
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The first term in the integrand gives no contribution to the integral above because of

periodicity. Since I(if) = I(if*), we get

o——E/%m (0)2d0
=2 "4

2
+9 / rdf {AO(—ik;), |21+ cos(6 - 90)]e”/%ik’“ﬂ-wsw-ﬂd)}
0 wkr

2 27
:——/|Awww
™ Jo

. [ 2 [ .
o —im/4 . ikr(1—cos(0—6,))
R {e [Ao(k‘)r — /0 df[1 + cos(f — 0,)]e ] }

For large kr the remaining integral can be found approximately by the method of sta-

tionary phase (see Appendix B), with the result

2 ) 2 )
/ AB[1 + cos(9 — )]0t 37 i (6.28)
0 T

We get finally
2m
/ LAI2dO = —2RA(9,) (6.29)
0

Thus the total scattered energy in all directions is related to the amplitude of the
scattered wave in the forward direction. In atomic physics, where this theorem was
originated (by Niels Bohr), measurement of the scattering amplitude in all directions is
not easy. This theorem suggests an econmical alternative.
Homework For the same scatterer, clonsider two scattering problems ¢; and ¢s.
Show that
A1 (02) = As(6y) (6.30)

For general elastic waves, see Mei (1978) : Extensions of some identities in elastody-

namics with rigid inclusions. J . Acoust. Soc. Am. 64(5), 1514-1522.

6.3 Scattering by a circular cavity continued

Without loss of generality we can take 6, = 0. On the surface of the cylindrical cavity

T = a, we impose
Dor n Do

o Ty 0 T
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It follows that A,, = 0 and
e"i"AJ) (ka) + B,kH (ka) =0, n=0,1,2,3,...n

where primes denote differentiation with respect to the argument. Hence

. Il (ka)
B, = —Ae,i" =
" “"H (ka)
The sum of incident and scattered waves is
= J! (ka)
o nEZO enl [Jn(k:r) ' (k) n(kr)] cosnd (6.31)
and
SN J! (ka)
= Ae Wt " - H .32
Y e ngzo enl [Jn(kr) ' (k) n(k‘r)] cos nd (6.32)

The limit of long waves can be approximatedly analyzed by using the expansions for
Bessel functions for small argument

n

z 2"(n — 1)

2
In(z) ~ ST L Yo (x) ~ - logz, Y,(z)~ — (6.33)
Then the scattered wave has the potential
bs Jo(ka) . Ji(ka) 3
1 HO(kT)H(’](k:a) 2ZH1(kT)H{(k:a) cos 0 + O(ka)
= g(ka)2 (—%Hg(k"f’) — Hy(kr) cos 6’) + O(ka)? (6.34)

The term Hy(kr) coresponds to a oscillating source which sends istropic waves in all
directions. The second term is a dipole sending scattered waves mostly in forward and
backward directions. For large kr, the angular variation is a lot more complex. The far
field pattern for various ka is shown in fig 4.

On the cavity surface surface, the displacement is proportional to ¥ (a,6) or ¢(a, ).

The angular variation is plotted for several ka in figure 5.
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Angular Distribution of Scattered Energy in the Far Field in Cylindrical Scattering
A’ A’
f\ 9 /\

Polar Distribution of ® (A, ©) on a Circular Cylinder.

Images by MIT OCW.
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7 Diffraction of SH wave by a long crack

References

Morse & Ingard, Theoretical Acoustics Series expansions.

Born & Wolf, Principle of Optics Fourier Transform and the method of steepest descent.
B. Noble. The Wiener-Hopf Technique.

If the obstacle is large, there is always a shadow behind where the incident wave
cannot penetrate deeply. The phenomenon of scattering by large obstacles is usually
refered to as diffraction.

Diffraction of plane incident SH waves by a long crack is identical to that of a hard
screen in acoustics. The exact solution was due to A. Sommerfeld. We shall apply
the boundary layer idea and give the approximate solution valid far away from the tip
kr > 1 by the parabolic approximation, due to V. Fock.

Refering to figure () let us make a crude division of the entire field into the illuminated
zone I | dominated by the incident wave alone, the reflection zone II dominated the sum
of the incident and the reflected wave, and the shadow zone III where there is no wave.
The boundaries of these zones are the rays touching the crack tip. According to this

crude picture the solution is

A, exp(ik cos 0z + ik sin Oy), I
¢ =1 Aolexp(ik cosbOx + ik sin Oy) + exp(ik cos Ox — ik sin Oy)], 11 (7.1)
0, 117

Clearly (7.1) is inadquate because the potential cannot be discontinuous across the
boundaries. A remedy to provide smooth transitions is needed.

Consider the shadow boundary Ox’. Let us introduce a new cartesian coordinate
system so that z’ axis is along, while the 3/ axis is normal to, the shadow boundary.

The relations between (x,y) and (2/,y’) are
2 =xcosh+ysinh, 1y =ycosd— xsinb (7.2)

Thus the incident wave is simply

¢I prng Aoeikfﬂl (73)
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Figure 7: Wave zones near a long crack

Following the chain rule of differentiation,

0¢ _0¢0v 000y _ 00 . 9¢
or  Ox' Ox Oy dr ox' oy’
oy 0x' Oy Oy Oy ox' oy’

we can show straightforwardly that

P00 00 P
ox2 Oy 0x2 Oy

so that the Helmholtz equation is unchanged in form in the 2, vy’ system.
We try to fit a boundary layer along the x” axis and expect the potential to be almost

like a plane wave
¢(x,/ ’ y/) _ A((Iﬁl, y/)eikx’ (74)
, but the amplitude is slowly modulated in both 2’ and ¢’ directions. Substituting (7.4

into the Helmholtz equation, we get

. 2
o 2 g AT Gy

o [OA A 2A
ke {a 0 0 + kM} =0 (7.5)

Expecting that the characteristic scale L, of A along 2’ is much longer than a wavelength,

kL, > 1, we have
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Hence we get as the first approximation the Schrédinger equation?

0A A

ik 4~ ,
ik * g7 O (7.7)

In this transition zone where the remaining terms are of comparable importance, hence

the length scales must be related by

k

1
i ek implying ky' ~ Vka'

Thus the transition zone is the interior of a parabola.

Equation (7.7) is of the parabolic type. The boundary conditions are

A(z,00) =0 (7.8)
Az, —o0) = A, (7.9)
The initial condition is
0, vy >0,
A0,y) = ’ (7.10)
AQ, ’y/ <0

he initial-boundary value for A has no intrinsic length scales except 2/, 1" themselves.
Therefore the condition kL, > 1 means kx’ > 1 i.e., far away from the tip. This
problem is somwhat analogous to the problem of one-dimensional heat diffusion across
a boundary. A convenient way of solution is the method of similarity.

Assume the solution

A=A f(7) (7.11)

where

7= vrka!

is the similarity variable. We find upon subsitution that f satisfies the ordinary differ-

(7.12)

ential equation
f"—imyf =0 (7.13)

2In one-dimensional quantum mechanics the wave function in a potential-free field is governed by

the Schrédinger equation

ih= 4 7= =0 (7.6)
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subject to the boundary conditions that

f—0, v— —o00; f—1, v— o0 (7.14)
Rewriting (7.13) as
f//
? =imy
we get

log f' = imy/2 + constant.

2! 2
f:C'/ exp(%)du

One more integration gives

Since '
/oo exp (7;7TU2) y ez7r/4
X U=
0 2 V2
we get .
e—z7r/4

“="x

and
A e_m/4 ~ imu? 6—i7r/4 em/4 v iTu?
f Ao \/i /—oo P ( 2 ) \/§ { \/§ 0 P 2 ( )

Defining the cosine and sine Fresnel integrals by
Y 2 vy 2
Cly) = / cos (ﬂ) dv, S(y) = / sin (ﬂ) dv (7.16)
0 2 0 2

we can then write
—im/4 {[1

e\/i S+ C(v)} +i E v 5(7)} } (7.17)

In the complex plane the plot of C(v)+1iS(7y) vs. v is the famous Cornu’s spiral, shown

in figure (?77).
The wave intensity is given by

|j|22 - % { B + C(v)r + E + S(v)r} (7.18)

Since €, S — 0 as v — —o0o, the wave intensity diminshes to zero gradually into

the shadow. However, C,S — 1/2 as v — oo in an oscillatory manner. The wave
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Phase Contours of Hz. From Born and Wolf Optics According to the Exact Theory.

Images by MIT OCW.
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Figure 10: Diffraction of a normally incident E-polarized plane wave

15 :
- Az
ol6 7
I(I/z N
+ O \g\‘ o |
;LOA r“;a/ }
O] e 7
o
i
QEhio-ok ook db ol o | {55
: 1o ,---r'q*_ 0Ol Oz of3 0ja 05 06 0J7 0lg |
;,7"/ S ! ==
;/ ol :
20 ——
8 i S
= 0la
10 /Z '.'i\i
\,\ I ){ o S [
[~ T15 of7

Figure 11: Cornu’s spiral, a plot of the Fresnel integrals
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intensity oscillates while approaching to unity asymptotically. In optics this shows up
as alternately light and dark diffraction bands.

In more complex propagation problems, the parabolic approximation can simplify the
numerical task in that an elliptic boundary value problem involving an infinite domain
is reduced to an initial boundary value problem. One can use Crank-Nicholson scheme
to march in ”"time”, i.e., 2’

Homework Find by the parabolic approximation the transition solution along the

edge of the reflection zone.
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8 Rayleigh surface waves

Refs. Graff, Achenbach, Fung

In a homogeneous elastic half plane, in addition to P, SV and SH waves, another
wave which is trapped along the surface of a half plane can also be present. Because
most of the action is near the surface, this surface wave is of special importance to
seismic effects on the ground surface.

Let us start from the governing equations again

o Po 1%

— == — 1
Ox? * dy? 2 o’ (8.1)
0*’H, 0*H, 1 0°H
=5 T Aas T 3 aa (8.2)
02 oy* g Ot?
We now seek waves propagating along the x direction
¢ =R (f(y)e "), H,=R(h(y)e ") (8.3)
Then f(y), h(y) must satisfy
2f d*h
d ) ( 2/0%_52).]0:07 d—y2+(w2/0%_£2)h:07 (84)

To have surface waves we insist that

a=4/2—-w?/c2, B=4/6—w?/ck (8.5)

be real and postive. Keeping only the solutions which are bounded for y ~ oo, we get
¢ = Ae Welbz—wt) - — Be Pueiléa—wt), (8.6)

The expressions for the displacements and stresses can be found straightforwardly.

u, = (ZfAe_ay . BBe_By> ¢iléa—ut) (8.7)
u = — (aAe‘ay + igBe—3y> gilée—wt) (8.8)
ey = L {( e 2@2> Ae~ — 21'3536—@} giler—et) (8.9)
T = K { (6 v ) Ae | mgBe—By} gilee—wt) (8.10)
oy = u{ 2iae Ae ™ + (5 +3 ) Be—ﬁy} gilgo—at) (8.11)
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On the free surface the traction-free conditions 7,, = 7,, = 0 require that
(F°+¢)a+2peB = o, (8.12)
_2imEA + (Bz n 52) B = 0 (8.13)
For nontrivial solutions of A, B the coefficient determinant must vanish,

(BQ + §2>2 _ AaBe? = 0, (8.14)

N w?]? 2 [ W[, w?

which is the dispersion relation between frequency w and wavenumber £. From either

(8.12) or (8.13) we get the amplitude ratio:

A 2i3¢ B +¢

or

B Fige  2af ]

(8.16)

In terms of the wave velocity ¢ = w/¢, (8.15) becomes

2\ 2 2\ 3 2\ 3
(2—0—2) :4(1—0—2) (1—0—2) . (8.17)
Cr L Cr

or, upon squaring both sides, finally
2 6 4 2
16 1
%{<i> —8(i) +<24——2) (i) —16(1——2)}20. (8.18)
Cr cr cr K Ccr R
where
PG A+2p 22w
e w o V1-2v

The first solution ¢ = w = 0 is at best a static problem. In fact@ = 3 = € and A = —iB3,

so that u, = u, = 0 which is of no interest.

We need only consider the cubic equation for ¢2. Note that the roots of the cubic
equation depend only on Poisson’s ratio, through x* = 2(1 —v)/(1 — 2v). There can be
three real roots for ¢ or w, or one real root and two complex-conjugate roots. We rule
out the latter because the complex roots imply either temporal damping or instability;
neither of which is a propagating wave. When all three roots are real we must pick the

one so that both @ and /3 are real. We shall denote the speed of Rayleigh wave by cx.
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Figure 12: The velocity of Rayleigh surface waves cg. From Fung Foundations of Solid

Mechanics.

For ¢ = 0, the factor in curley brackets is

{.}:—16< —Z—§F><O

L
For ¢ = ¢r the same factor is equal to unity and hence positive. There must be a solution

for ¢ such that 0 < ¢ < ¢p. Furthermore, we cannot have roots in the range c¢/cp > 1.

If so,
2
—2 c
Cr
which is not a surface wave. Thus the surface wave, if it exists, is slower than the shear

wave.

Numerical studies for the entire range of Poisson’s ratio (0 < v < 0.5) have shown
that there are one real and two complex conjugate roots if v > 0.263 ... and three real
roots if v < 0.263 . ... But there is only one real root that gives the surface wave velocity
cr. A graph of ci for all values of Poisson’s ratio, due to Knopoff , is shown in Fig. 8.

A curve-fitted expression for the Rayleigh wave velocity is

cr/er=(0-87+1-12v)/(1 4+ v). (8.19)

For rocks, A = pp and v = i, the roots are

(¢/er)® =4,2+2/V3,2 —2/V/3. (8.20)
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The only acceptable root for Rayleigh wave speed cg is

(crfer)? = (2—2/V3)2 =0-9194 (8.21)
or
Cr = 09588CT (822)
The particle displacement of a particle on the free surface is, from (8.7) and (8.8)
Uy = iA (5 — ﬁi) eilee—wb) (8.23)
2€
u, = A (—a + gre ) eiléo=wh) (8.24)
2€
Note that o
p+e kr
—Ale— — A &
a § 2% §+ 26 >0
22 2 —  7A\2 2
b= |ar IS :A{w] >0
2€ 20
hence
u, = asin(wt — &x), u, = beos(wt — £x)
and , )
u o u
=1 (8.25)

The particle trajectory is an ellipse. In complex form we have

%jti% = exp {i (wt — & — 7/2)} (8.26)

Hence as t increases,a particle at (z,0) traces the ellipse in the counter-clockwise direc-

tion. See figure (8).

9 Elastic waves due to a load traveling on the ground

surface

Refs: Fung: Foundations of Solid Mechanics
Cole and Huth: (1956, Elastic half space ; J Appl Mech25, 433-436.)
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Displacement of Particles on the Ground Surface in Rayleigh Surface Wave.

[ Direction Of Wave Propagatib

Instantaneous Particle Velocity Instantaneous Wave Surface Particle Path

TJ» M A / [(\

w ' w / W
— — - Displacement Vectors —
- 2 —
_— —_— -

- —_— _— — J—

_— —_— —_ —_ -

Adapted from Fung Foundations of Solid Mechanics.

Image by MIT OCW.

Mei, Si & Chen , (1985, Poro-elastic half space, Wave Motion, 7, 129-141.).

In this section the y axis is positive if pointing upwards.

Let the traction on the ground surface be :
Ty = —P(x+Ut). 7, =0, on y=0 (9.1)

Let us make a (Galilean ) transformation to a coodinate system moving to the left at
the speed of U, so that the load appears stationary, Then, by the chain rule, derivatives

are changed accorindg

0 g 0 g 0 0 0

In the moving coordinates, the wave equations are changed to

P P> 1 (9 9\
A — | @ -
o2 2 (81& +U8x) ’ (9:3)
PH PH 1[0 9\

i — | H 4
ox?  Oy* A (815 - Uaa:) (9:4)

where we have abbreviated H, simply by H.
In the steady state limit they become
P2d 09?0 U?oPP
— = (9.5)

o Ty T a e
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O’H 0*H U?0*H

Ox? o dy? 2 9x? (96)
Introducing the Mach numbers:
M1 == £7 M2 — g (97)
Cr, Cr
then (9.5 ) amd (9.6) become
?d P
1— M7 =0 9.8
(1= M) Ga + 5,2 (0.8)
o?H 0*H
1— M = :
( ) ozt oz =0 (9.9)

Because ¢, > c¢r, we must have My > M;. The stress components can be derived

straigthtforwardly in terms of the potentials

0?d  0*°H
e = (A+2p)V20 —2p
§ 2 (&y 8x8y)
U2 82<I> 0P 0?H
= (A2 —2u(M? —1)=— +2
Using ther fact that A 4+ 2u)/u = cL/cT, we further get
0?® 0?H
v = | (M3 —2M? +2) = + 2 9.10
g “[( +)82+ax8y] (9-10)
Similarly we find , ,
0P 0°H
M} —2)—— —2 11
Tyy K |:( )81'2 axay:| (9 )
0?P 0?H
= M2 -9 9.12
Tay = |i 8$8 + ( 2 ) axg :| ( )
We now examine the special pressure distribution, as shown in figure (9):
e x>0,
p(z,0) = P,P(z) = (9.13)
e x<0
We jshall define a length scale
1
= —+ — 14
/ P(x + p~ (9.14)
Thus the traction boundary condtions (9.3) on the ground surface become
0P 0PH P,
M2 9 — _ - __° =0; 9.15
( 2 )01'2 aIay L P(ZIZ’), Y ) ( )
82<I> 82H
MZ -2 =0. 1

Three cases will be dlstmgmshed:
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Figure 14: A moving pressure distibution on an elastic half space. Shown in a moving

coordinate system, the pressure appears stationary.
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9.1 Supersonic: My, > M; > 1

Let us apply the exponential Fourier transform defined by

f) = /_OO Fla)eda,

Flz) — % /_ Z FO)EP A, (9.17)
From the governing wave equations we get
giy‘f + N2 =0, giyz + 32X%h =0; y<O. (9.18)
where
Br=M—1, j=1,2 (9.19)

The general solutions of the Fourier Transforms are
¢ = ANV + B(\)e P,

h = C(\)eP + D(\)e2v

so that
1 [~ . o
O(z,y) = 5 / [A(A)d““ﬁw) + B(A)elm—ﬁly)} d. (9.20)
H(z,y) = % / [C()\)ei)‘(erﬁ_zy) + D(A)eim—@y)} d. (9.21)

In order that waves below the ground surface trail behind the surface load, we discard

the second term in each integral. Thus
b= AN, h=C(\)e (9.22)

Now the boundary conditions require

L do _
md—y — N 32h =0 (9.23)

and

- dh P, 1 1
N 2p — 2iN— = =2 — 24
by — 2 dy p ()x —idop A+ ioz2) (9:24)
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Use has been made of the result

o) 0 o)
/ e_i’\wp(x)dx = / e AT 0 4 / e~ AT gy
- 0

1 1 1
= - — 9.25
1 ()\ — ’iOél A + iag) ( )
It follows that
—2M?B1A — BINC =0 (9.26)
and
_ P, 1 1
“B2NZA + 20230 = =2 - 2
52 + 620 o A — iOél A + ’iOéQ <9 7)
The last two equations can be solved to give
iP, 1 1 —32
A=— — + . = =— 9.28
1 ()\—zozl )\+za2) A2(B3 + 451 35) (9:28)
iP, [ 1 1 20
C==— — + . = > 9.29
U <)\—2a1 )\+2a2> A2(03% + 451532) (9:29)
The inverse transforms of ¢ and h are:
® iR |k /00 1 1
—H 2 p ko oo \A =g A +ian
5 d\
exp id | 2 + ﬁl y |l = (9.30)
B, A
where
— (M3 —2)
ki = 5 2 ==
(M7 —2)" + 45,0,
—943
ky = 5y (9.31)

(M5 — 2)2 +45,8y

Using (9.10), ( 9.11) and ( 9.12), we get the stress components. For example

Ty 2gﬂﬁ /OO 1 1 iAE1

Yy — .32

P, omi )\ agim )¢ D (9:32)
274 oo \A =t A+ el (9.33)

where

& =z + By, &=z + Byy (9.34)
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In view of (9.25), the inverse transform is immediate,

B0 — 260k P(&) — (M - 2P () (9.35)

As a check, the shear stress on the ground surface y = 0 is

% = [2B1k1 — (M3 — 2)ks] P(x) =0 (9.36)

in view of (9.31).
It can be shown that
0
- T _
Tox = B (M5 — M? 4+ 2) kyP (&) — 2B,k2P (&),
Tyy = (to be worked out) (9.37)
Note that the disturbances in the half space indeed trail behind the surface pressure.
The front of the P wave forms the first Mach wedge, followed by the front of the SV
wave. Disturbances are concentrated essentially along the chracteristics = + 3,|y| =
constant and x + (3,|y| =constant.

Homework: Verify the above results by the method of characteristics.

9.2 Subsonic case, 1 > My > M,

In this case (9.8) and (9.9) are elliptic. Let

Bi = 1-M},  pBhy=1-Mj,

by — —MZ +2
(M3 —2)" — 4616,
—2
ky = b (9.38)

(M3 —2)° — 45132

The formal solutions for ® and H are

> — 1 Poks /OO 1 1
2 ) oo\ N —dy A+

o dA
ABry idz
xe vy

g - P0k4/°° 1 B 1
2 oo \A —tag A+

sgnA
x ez e’*ngA—nZdA. (9.39)
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@ Supersonic - Oxx - Oyy
0 %t ° f/\\/\E
i 10 J——u n= —
15 % o 1.5 %
2.0 N 20° - . N
5 4 3 2 1 0 1 2 3 4 5 5 0 1 2 3 4 5
x/L x/L
© © N
° Z : ’ I ——
ylL 1.0 — 1" v % |
15
- — . =
5 4 3 2 4 0 1 2 3 4 5 5 0o 1 2 5 4
x/L x/L

Stress Variations in the Ground Under Supersonic Load on the Surface. From Mei, Si & Chen, 1985.

(In this Article, the Ground is Poroelastic, P Stands for the Pore Pressure.)

Image by MIT OCW.
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By using (9.10), (9.11) and (9.12), the stress components can be expressed as Fourier

integrals, which can be evaluated in terms of the exponential integral defined by

Ei(z) = / ¢ _dr

-
o . Zn
= —y—In z—zl(—l) — (9.40)
Let
21 =T+ ’iﬂly, 20 =X + ’Lﬂgy (941)
and
G(z) = e E) (—az) — € Ey (an2) . (9.42)
Then the stress components are
- Toy k 25sk
Fa= = - (M3 —2M7 +2) f%G(zl) —~ %%G(zg),
Ty k 205k
f= = (8 -2) Baa(a) + P2Mg g ()
0 ™
. Ty 2061k
Ty = Fs = ﬁ; SR(G (22) — G (21)] (9.43)
Note that
E if v <0,
1111} E1 (—ozlzl) = 1(a|x|) ) 1 v
y10 —Fi(ax) —ir if z >0,
—FEi +m if x <O,
lim By (az) = iale) +mi if (9.44)
y10~ Ey(ax) ifx >0
where
Ei(z) = —PV / C dr (9.45)
. T

with the integral being a principal value.

From the definitions k3 and k; become infinite when their denominators vanish.
This occurs when the external load travels at the speed of the Rayleigh surface wave
and indicates resonance. This is possible because Rayleigh wave speed is less that both
cr, and c¢p. The unbounded resonance need not be a threat in practise because the model

of steady two-dimensional line load is an idealization not usually realized.
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®

Supersonic - Oxx

0
yiL 10 %
20 %

-0.5
y/L -1.0
-1.5
-2.0

x/L

-2.0

-0.5

-1.0

-1.5
-2.0

-1.0

-1.5

x/L

Stress Variations in the Ground Under Subsonic Load on the Surface. From Mei,

Si & Chen, 1985.

Image by MIT OCW.
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9.3 Transonic case, My > 1 > M,

The scalar potentials are

P, *° -
> = 2—0 dX e A(N) NPy,
T J o
PO OO AT iXBoy
where
RN 1 1
AN = —(M2-2)(k L/’{; — —
) (M; )<5+)\6>\2 A—ia;  Atiag)’
. I\l , ) 1 1
B = 2 —k ke | — — .
(a) Zﬂ1<>\ 5 1 1Kg N \X—ia,  Atiag )’ (9.47)
o B2
(M3 —2)" + 16525,
ks = —4513,

(M —2)' + 16835,
In terms of z; = x +iBy and & = x + By all the integrals in (3.18) can again be

evaluated. The results involve the following functions:

H(E) = e™'E (f) +e M Ei (),
(&) = e FE (ay|¢]) + e B (ay)¢])

= H(l¢)). (9.48)
The stresses are
- 7}?@; 2 2 2 1 ;
Tox = F = — (M2 — 2M1 + 2) (M2 - 2) %%{(]{5 - Zkﬁ) G(Zl)}
0
B 46132 k5H (52) + 7Tk6 6_01527 52 > Ov (9 49)
m —ksH* (52) + Wkﬁe_az‘&', & <0,
~ T@?y 2 2 1C\ y
Tyy = FO = — (M2 _2) ;\y{(k5_7’k6)G(Zl)}

4618y | ksH (&) + mkg e 142, § >0,

(9.50)
d —ksH* (&) + mhge 282l & <0
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- Oy " Oyy
0.0 0.0 o
/ ——N
-0.5 -0.5
. 1.0 -
yiL -1.0 0_5] y/lL 10
-1.5 0 -1.5
2.0 —— 20 [\
5 4 3 2 4 0 1 2 3 4 5 5 4 3 2 -1 0 1 2 3 4 5
x/L x/L
00 /A\F 00 %
%
0.5 -0.5 —JA;
e ———
y/lL -1.0 ] VL jol —/————————
15 5
2.0

-2.0

x/L

x/L

Stress Variations in the Ground Under Transonic Load on the Surface. From Mei, Si & Chen, 1985.

Image by MIT OCW.

] 70 2 .
fy = = (M) %m{(l% —ike) G (1)}
k- H koo o162 0
_ (M22 _ 2) 2_51 5 (52) + 7 6 € ) 52 > ) (951)
T\ —ksH* (&) +mhge 2@l & <0

Note Computations are for the following inputs:

v=1/2, p=10°N/m? a;=0.005m, ay=0.1m, L=210m

A Partial wave expansion

A useful result in wave theory is the expansion of the plane wave in a Fourier series

of the polar angle 6. In polar coordinates the spatial factor of a plane wave of unit
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amplitude is

6zk:c — ezkr cos 6 )

Consider the following product of exponential functions

1 /z2t\" <1 /=z\"
zt/2 —z/2t: — | == - | =
e | (3) 8 (5)

.| (z/2)" z/2)" 2 z/2)nH .
Zt { {u 1(!(211)! ;!(éiz)ﬁ'””_l)

(2/2)n+2r
ri(n+r)!

The coefficient of ¢" is nothing but .J,,(z), hence

ol (1)) - e

Now we set
t =i z=kr
The plane wave then becomes
o
gtk — Z 6in(€+7r/2<]n(z).
N=—00

Using the fact that J_, = (—1)"J,, we finally get

ek = gihreost Zen w(kr) cosnb, (A.1)

where ¢, is the Jacobi symbol. The above result may be viewed as the Fourier expan-
sion of the plane wave with Bessel functions being the expansion coefficients. In wave
propagation theories, each term in the series represents a distinct angular variation and
is called a partial wave.

Using the orthogonality of cosnf, we may evaluate the Fourier coefficient

2

€T

Jn(kr) = / ek eost cosnfde, (A.2)
0

which is one of a host of integral representations of Bessel functions.
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B Approximate evaluation of an integral
Consider the integral
2m ]
/ df[1 + cos( — B,)]e*r1meos0=00)
0
For large kr the stationary phase points are found from

0 .
%[1 —cos(f —6,)] =sin(@ —6,) =0

or § =46,,0, + m within the range [0, 27|. Near the first stationary point the integrand
is dominated by
2A(90)6ikt(9_9°)2/2.

When the limits are approximated by (—oo, 00), the inegral can be evaluated to give

.A(HO)/ eikr€2/2d9 — \/?eiﬂ/‘lA(eo)
—0 r

Near the second stationary point the integral vanishes since 1+ cos(f—60,) == 1—1 = 0.

Hence the result (6.28) follows.



